
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 5

Mutual Exclusion and Its Algorithms

Jaya Jain
Student, Dept. of Computer Applications, National Institute of Technology, Kurukshetra , (India)

Neha Mishra

Student, Dept. of Computer Applications, National Institute of Technology, Kurukshetra , (India)

Dr.Bharti Sharma

Assistant professor, National Institute of Technology, Kurukshetra, (India)

Abstract – A distributed system is a gathering of self-regulating

node appears to its user as a single coherent system. Resource

division is the chief advantage of distributed computing. Though,

a distributed computing system may perhaps have some physical

or virtual resource that may possibly be reachable by an only

process at a time. The mutual exclusion concern is to ensure that

no further process at a time is permissible to access some collective

resource .In this paper the various protocols will be discussed for

mutual exclusion process.

Index Terms – Mutual Exclusion, Distributed System, Protocols.

1. INTRODUCTION

Generally in every computer system there are resources that are

shared among two or numerous tasks. That means these

resources need to be protected from having more than one task

using them at the same time. This protection mechanism is

called mutual exclusion .In other words mutual exclusion is a

property of concurrency control, which is introduce for the

purpose of preventing race conditions; it is the requirement that

one thread of execution never enter its critical section at the

same time that another concurrent thread of execution enters its

own critical section. Resource sharing and cost effective are the

major advantage of distributed computing system.

2. RELATED WORK

 Types of mutual exclusion algorithms:-

 Centralized Algorithm

 Distributed Algorithm

Centralized Algorithm :-As its name implies, there is single

coordinator which handles all the requests to access the shared

data. Every process takes permission to the coordinator, if

coordinator agree and will give permission then a particular

process can enter into CS. Coordinator will maintain a queue

and keep all the requests in order.

Benefits

 It is Fair algorithm; it follow FIFO algorithm concept for

giving permission.

 It is very simple algorithm in context of implementation.

 We can use this scheme for general resource allocation.

Shortcomings

 No multiple point failures, No fault tolerant.

 Uncertainty between No-reply and permission denied.

 Performance bottleneck because of single coordinator in a

large system.

Distributed algorithm [2]:-In distributed algorithm , there is no

coordinator. For permission to enter into CS, Every process

communicate to other process. These algorithms are sectioned

into two parts -

 Non-Token based algorithms

 Token based algorithms

Contention (Non-Token) based algorithms [2,4,9]:-In this

algorithm, process converse with a group of other process to

select who should execute the critical section first. These

algorithms also divided into 2 parts:

 1. Timestamp based

 2. Voting scheme

Two basic Timestamp-based Contention algorithms are:

LAMPORT’S ALGORITHM :Lamport designed a

distributed MUTEX algorithm on the basis of his concept of

logical clock . This is a algorithm which is a non-token based

scheme. Non-token based protocols use timestamps to order

requests for CS. Request message Contain following:

Timestamp is a distinctive integer value which is given by the

operating system to the process when they produce requests for

CS. Timestamp is rapidly increased every time when a request

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 6

is reached. Lesser timestamp requests have higher precedence

rather than big timestamps requests. In lamport’s algorithm, for

a process Pi, request set Ri= {P1, P2, P3…….Pn}. It contains

of all those process from which Pi must require permission

before entering the CS. Every process maintains a queue of

awaiting requests for entering CS in the ascending order of

timestamps. This algorithm assumes that channels which are

using follows FIFO method.

3. ALGORITHM

Requesting the critical section:

When a process wants to enter into CS, it follows the following

steps:

1. Enters its request in its own queue (ordered by time stamps).

2. Sends a request to all other nodes.

3. Wait for replies from all other nodes.

4. When another process receives this request message, it sends

a timestamp reply message to the requesting process and keeps

this request in its own request queue.

Executing the critical section:

A process can enter into CS when these two conditions are

satisfied:

 Pi has not received a message with timestamp larger

than its from all other process.

Pi’s request is at the top of request_ queue.

Releasing the critical section:

1. For exiting the critical section, it removes its request from

the queue and sends a release message to every process.

2. Upon receiving release message form the process, then other

process removes the related entry from its own request queue.

3. If own request is at the top of its queue and all replies have

been received, enter into critical section.

Performance

Message complexity:

(N-1) number of messages required for requesting CS. (N-1)

number of messages required for reply. (N-1) number of

messages necessary for release. Total 3 (N-1) numbers of

messages required in heavy load as well as in case of lightly

loaded.

Synchronization delay:

Average message delay for sending a message from one

process to another process. T time is required in

synchronization.

RICART-AGRAWALA ALGORITHM:

Ricart-agrawala algorithm is an expansion and optimization of

Lamport’s protocol. This algorithm is also for MUTEX and it

is a non-token based algorithm. This algorithm combines the

RELEASE and REPLY message of lamport’s algorithm and

decreases the complexity of the algorithm by (N-1). In this

algorithm, there is a request set Pi= (P1, P2, P3……Pn). It

comprises of all the sites from which a site needs to acquire

authorization before entering to CS. The Algorithm proceeds

as follows.

Requesting the critical section

1. When a site desires to execute into CS, it sends a request

along with its timestamp to all sites. This message includes the

site's name, and the current timestamp of the system according

to its logical clock.

2. Upon reception of a request message, another site will

immediately sends a time stamped reply message if and only

if:

 receiving process is not currently interested in the

critical section.

timestamp value is higher than requesting site.

message. This means that a reply will be sent only after the

receiving process has completed using the CS itself.

Executing the critical section

messages.

Releasing the critical section

1. Upon exiting the critical section, the site sends all deferred

reply messages.

2. In this algorithm, all the CS requests are executed in their

timestamp order.

Performance

Message complexity:

(N-1) number of messages required for requesting CS. (N-1)

number of reply messages merges with release. Total 2 (N-1)

numbers of messages required in heavy load as well as in case

of lightly loaded.

Synchronization delay:

Average message delay for sending a message from one

process to another process. T time takes place in

synchronization.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 7

because reply messages are send to only those sites whose

timestamp is greater than executing site.

Disadvantage:

Failure of a node – May result in starvation.

Controlled (TOKEN) BASED ALGORITHMS :-

Token-based algorithms are the algorithm in which a site is

allowed to enter its CS if it possesses the token. This token is

unique among the processes . Instead of timestamps Token-

based algorithms use sequence numbers to differentiate

between old and existing requests. Usually FIFO message

delivery is not adopted. Also their Proof of correctness is

trivial.

 Problems: The question is how to get a token. This makes

distinction between different algorithms. On the basis of

structure in which process are connected, these algorithms are

divided into 3 parts.

Ring Structure : According to this structure all processes are

allotted and are linked in the form of a ring . The positions of

ring may be given in numerical sequence of network

addresses . The important thing is that each process knows who

is next in line after itself. The way of ordering is not that

important.

Advantages:

Simple, deadlock-free, fair.

Disadvantages:

 absence of any request (unnecessary traffic), the

token gets distributed

– the wait for token may be high.

Broadcast Structure (Suzuki-Kasami Algorithm) :

According to Suzuki-kasami algorithm, if a process do not

possess the token and still wants to enter the CS , the process

sends a REQUEST message for the token to all other processs.

A process which possesses the token sends it to the requesting

site upon the receipt of its REQUEST message. If a process

receives a REQUEST message when it is executing the CS, it

sends the token only after it has completed the execution of its

CS.

This algorithm must efficiently address the following two

design issues:

(1) How to distinguish an outdated REQUEST message from a

current REQUEST message: A site may receive a token request

message after the corresponding request has been satisfied and

this is because of variable delays in messages. If the request

corresponding to a token request has been satisfied site cannot

determined, it might dispatch the token to a process that does

not need it .this will not disturb the accuracy, nevertheless,

this may seriously reduce the performance.

(2) How to determine which site has an outstanding request for

the CS:, The process must determine how many sites have an

excellent request for the CS after a process has finished the

execution of the CS so that the token can be dispatched to one

of them. The first issue is addressed in the following manner:

A REQUEST message of site Pj has the form REQUEST (j, n)

where n (n=1, 2 ...) is a sequence number which indicates that

site Pj is requesting its nth CS execution. A site Pi keeps an

array of integers RNi[1..N].where RNi[j] denotes the largest

sequence number received in a REQUEST message so far

received from site Pj .When site Pi receives a REQUEST(j, n)

message, it sets RNi[j]:=max(RNi[j], n).When a site Pi receives

a REQUEST(j, n) message, the request is outdated if RNi[j]>n.

The second issue is addressed in the following manner: The

token consists of a queue of requesting sites Q, and an array of

integers LN [1...N]; where LN[j] is the sequence number of the

request which site Pj executed most recently. After executing

its CS, a site Pi updates LN[i]:=RNi[i] to indicate that its

request corresponding to sequence number RNi[i] has been

executed .At site Pi if RNi[j]=LN[j]+1, then site Pj is currently

requesting token.

Requesting the CS:

If the requesting site Pi does not have the token, it increments

its sequence number RNi[i], and sends a REQUEST (i,sn)

message to all other sites.

– When Pj receives the message, it sets RNj[i] to max (RNj[i],

sn). If Pj has the idle token, it sends the token to Pi if RNj[i]

=LN[i] +1.

Executing the CS:

Enter CS when token is found.

Releasing the CS:

When the execution of the CS is completed, process Pi takes

the following activities: – Sets LN[i] to Rni[i]. – For each

process Pj whose ID is absent in the token queue, it attaches

its ID to the token queue if RNi[j] = LN[j] +1. After the above

update if the token queue is nonempty, it vanishes the top

process ID from the queue and sends the token to the process

specified by the ID.

Performance:

Message complexity :

Needs 0 messages if the requesting process holds the token not

in use. N messages otherwise (N-1 broadcast and 1 to send the

token).

Synchronization delay:

0 or T based on if process grasp the token at the time of request.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 12, December (2017)

ISSN: 2395-5317 ©EverScience Publications 8

No Starvation:

Token request messages spread all other processes in limited

time. Meanwhile one of these processes possess the token, the

request will be placed to the token Q in finite time. As there are

at maximum of N-1 more requests in front of this request, the

request.

4. CONCLUSION

Requests for access to the critical section are satisfied in the

order of their timestamps ,in Non-Token based approach ,

therefore fairness is certain. In their communications in

comparison with the token-based algorithms More no. of

messages require for Non-token based algorithms. No

algorithm is perfect as everyone has their own pros and cons.

No token is required to enter into CS as Non-Token based

algorithms are called permission based algorithms . Multiple

successive rounds of messages are exchanged between the

processes to determine which process will enter the CS next.

All nodes of the network are completely reliable. The algorithm

delivers the resulting certainties: Mutual exclusion is

guaranteed, Deadlock is not possible, Starvation is also

impossible.

REFERENCES

[1] Rahul Garg, Vijay K Garg, Yogish sabharwal “Scalable algorithms for

global snapshots in distributed systems ” ACM 2006.

[2] “Distributed Mutual exclusion” ppt. by Rajnitha Shivarudraiah
[3] “Several-tokens Distributed Mutual Exclusion algorithm in a logical ring

network” by Ousmane.

[4] M. Singhal and N. Shivaratri, Advanced Concepts in Operating Systems,
New York, McGraw Hill, 1994.

[5] Randy Chow,Theodore Johnson “Distributed Operating system and

algorithm analysis”
[6] A. Tanenbaum and M. Van Steen, Distributed Systems: Principles and

Paradigms, Upper Saddle River, NJ, Prentice-Hall, 2003.

[7] Abhishek swaroop, Awadesh kumar singh “a STUDY BASED

ALGORITHMS FOR Distributed mutual exclusion”.

[8] K.Raymond,”A distributed algorithm for multiple entries to a critical

section”,Information processing letter, vol.30, pp.lg9- 193,1989.
[9] D.agarwal,A.El Abbadi,”A token baesd fault tolerant Distributed mutual

exclusion algorithm,journal of parallel and distributed

computing,24,pp.164-176,1995.
[10] I.Suzuki and T.Kasami, “A distributed Mutual exclusion algorithm”. ACM

Transaction on computer systems. Vol.3,no. 4,pp. 344-349,1985.

